2012
DOI: 10.1119/1.3685119
|View full text |Cite
|
Sign up to set email alerts
|

Measuring Drag Force in Newtonian Liquids

Abstract: The experiments described in this paper have two goals. The first goal is to show how students can perform simple but fundamental measurements of objects moving through simple liquids (such as water, oil, or honey). In doing so, students can verify Stokes' law, which governs the motion of spheres through simple liquids, and see how it fails at higher object speeds. Moreover, they can qualitatively study fluid patterns at various object speeds (Reynolds numbers). The second goal is to help students make connect… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2015
2015
2021
2021

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 2 publications
0
1
0
Order By: Relevance
“…The estimation of the terminal fall velocity (settling velocity) of particles within a fluid under gravity is a subject of interest among a wide range of scientific disciplines in physics, chemistry, biology, and engineering. The terminal fall velocity calculation from Stokes' Law is usually taught in introductory courses of physics of fluids as an approximate relation, at low Reynolds numbers, for the drag force exerted on an individual spherical body moving relative to a viscous fluid 2,3 .…”
Section: Introductionmentioning
confidence: 99%
“…The estimation of the terminal fall velocity (settling velocity) of particles within a fluid under gravity is a subject of interest among a wide range of scientific disciplines in physics, chemistry, biology, and engineering. The terminal fall velocity calculation from Stokes' Law is usually taught in introductory courses of physics of fluids as an approximate relation, at low Reynolds numbers, for the drag force exerted on an individual spherical body moving relative to a viscous fluid 2,3 .…”
Section: Introductionmentioning
confidence: 99%