Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The phase modulation technique is adopted to reduce the coherent noise that arises from spurious interference. By choosing an appropriate driving signal, the method can reduce the coherent function of coherent noise to a great degree while keeping the coherent function of a coherent signal nearly unchanged. Simulation results show that for the grating interferometer, the phase error caused by coherent noise is reduced by 81.53% on average. For the Twyman interferometer, the fringe quality and contrast deteriorated by coherent noise are significantly improved. Furthermore, an experiment is set up in the phase-modulated Twyman interferometer to verify the feasibility of the principle. It is concluded that the method is effective to reduce the coherent noise in interference systems.
The phase modulation technique is adopted to reduce the coherent noise that arises from spurious interference. By choosing an appropriate driving signal, the method can reduce the coherent function of coherent noise to a great degree while keeping the coherent function of a coherent signal nearly unchanged. Simulation results show that for the grating interferometer, the phase error caused by coherent noise is reduced by 81.53% on average. For the Twyman interferometer, the fringe quality and contrast deteriorated by coherent noise are significantly improved. Furthermore, an experiment is set up in the phase-modulated Twyman interferometer to verify the feasibility of the principle. It is concluded that the method is effective to reduce the coherent noise in interference systems.
Sinusoidal phase-modulated signal light through the Fabry-Perot interferometer can produce a beat signal. Moreover, its amplitude monotonically changes with the signal light frequency. So the beat signal amplitude can be used to measure laser-Doppler-shift. In addition to the beat signal, the phase-modulated signal also contains a direct current (DC) signal, and it still contains a large amount of Doppler-shift information, but the information is not utilized, resulting in the waste of Doppler information. In this paper, this kind of phase-modulated laser-Doppler-shift measurement method is improved to simultaneously utilize the useful information in the DC and beat signal for the Doppler-shift measurement. The specific method is to use the ratio of beat signal amplitude to DC signal amplitude to define a new parameter used in Doppler-shift measurement. The signal light intensity terms in DC and beat signal can be eliminated, so the improved phase-modulated laser-Doppler-shift measurement method does not need to measure the signal light intensity, which makes its structure further simplified and a noise channel eliminated. By comparing the frequency change curves between the newly defined parameter and the beat signal amplitude theoretically, we find that they have the same distribution rule. This theoretical result shows that the improved phase-modulated laser-Doppler-shift measurement method will keep the same working mode as un-improved one, and can inherit its advantages. In theory, by comparing the measurement sensitivity curves, it is proved that the improved phase-modulated laser-Doppler-shift measurement method has higher measurement sensitivity and dynamic range than the un-improved one. The useful information included in the DC signal is the modulated signal light intensity transmittance of Fabry-Perot interferometer. So the improvement is essential to introduce the advantages of edge-technique laser-Doppler-shift measurement method based on the Fabry-Perot interferometer into the phase-modulated method for achieving higher performance. Two phase-modulated laser-Doppler-shift measurement methods before and after improvement are separately used to measure the frequency-shifted controllable signal light reflected by a hard object. The experimental results are in accordance with the theoretical analysis results very well. The comparison of experimental result between the two methods shows that the improved phase-modulated laser-Doppler-shift measurement method can approximately double the measurement dynamic range and reduce about 35% measurement standard deviation compared with the un-improved one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.