Long-time molecular dynamics (MD) simulations are now able to fold small proteins reversibly to their native structures [LindorffLarsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517-520]. These results indicate that modern force fields can reproduce the energy surface near the native structure. To test how well the force fields recapitulate the other regions of the energy surface, MD trajectories for a variant of protein G are compared with data from site-resolved hydrogen exchange (HX) and other biophysical measurements. Because HX monitors the breaking of individual H-bonds, this experimental technique identifies the stability and H-bond content of excited states, thus enabling quantitative comparison with the simulations. Contrary to experimental findings of a cooperative, all-or-none unfolding process, the simulated denatured state ensemble, on average, is highly collapsed with some transient or persistent native 2°structure. The MD trajectories of this protein G variant and other small proteins exhibit excessive intramolecular H-bonding even for the most expanded conformations, suggesting that the force fields require improvements in describing H-bonding and backbone hydration. Moreover, these comparisons provide a general protocol for validating the ability of simulations to accurately capture rare structural fluctuations. M olecular dynamics (MD) simulations can now probe protein dynamics on millisecond timescales and thereby enable investigation of a variety of biological problems, including binding, conformational changes, and folding. A landmark example is the all-atom simulations by Shaw and coworkers where multiple folding and unfolding events were observed in long time trajectories (1, 2). In addition to predicting or matching observed folding rates with a single set of parameters, these simulations produced native-like models for 12 small, fast-folding proteins. Equally impressive is their observation of multiple discrete folding and unfolding transitions, which indicates that folding proceeds on an energy landscape with two major states separated by a free energy barrier. This barrier-limited folding behavior replicates that observed for many proteins. Not surprisingly, these remarkable simulations are being extensively analyzed (3-5).The applicability of MD for many situations is limited by the extent to which the entire landscape is recapitulated. An accurate representation of native-like states does not imply a correct representation of other states (e.g., intermediates and unfolded structures). Proper validation requires a comparison with experiments that probe lowly populated conformations. NMR measurements probe subsecond dynamics with single residue resolution, although with a limitation to states with populations exceeding 0.5% (6). Fluorescence, CD, FRET, and small angle X-ray scattering (SAXS) measurements are well adapted to kinetic studies but provide limited spatial resolution.Hydrogen exchange (HX) data report on the H-bond patterns and populations of extremely rare state...