2015
DOI: 10.2139/ssrn.2698067
|View full text |Cite
|
Sign up to set email alerts
|

Measuring Productivity When Technologies are Heterogeneous: A Semi-Parametric Approach for Electricity Generation

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

1
1
1

Year Published

2016
2016
2016
2016

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(3 citation statements)
references
References 54 publications
(60 reference statements)
1
1
1
Order By: Relevance
“…Thus, the plants could produce 12.6% additional output by using best practice with the same input endowment. This expected inefficiency deviates considerably from the results in Seifert (2015) and Seifert et al (2016), which are both based on similar samples. However, the observation period of both studies end one in 2010, one year before the data in our sample, and one year before the considerable down-turn in gas-fired electricity generation in Germany (see Figure 2).…”
Section: Data Sources Key Variables and Descriptive Statisticscontrasting
confidence: 93%
See 2 more Smart Citations
“…Thus, the plants could produce 12.6% additional output by using best practice with the same input endowment. This expected inefficiency deviates considerably from the results in Seifert (2015) and Seifert et al (2016), which are both based on similar samples. However, the observation period of both studies end one in 2010, one year before the data in our sample, and one year before the considerable down-turn in gas-fired electricity generation in Germany (see Figure 2).…”
Section: Data Sources Key Variables and Descriptive Statisticscontrasting
confidence: 93%
“…The estimates of scale elasticity obtained are in line with more recent studies' findings on scale elasticities in fossil fuel electricity generation, as e.g., Kumbhakar and Tsionas (2016). Compared to Seifert et al (2016) and Seifert (2015) also analyzing German electricity generation, results differ in a few points. Seifert et al (2016) The results of this analysis also need to be interpreted with caution.…”
Section: Scale Efficiency and Scale Elasticitysupporting
confidence: 88%
See 1 more Smart Citation