2011
DOI: 10.1007/978-3-642-23672-3_21
|View full text |Cite
|
Sign up to set email alerts
|

Measuring Shape Ellipticity

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
2
0
2

Year Published

2012
2012
2019
2019

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 17 publications
1
2
0
2
Order By: Relevance
“…3(c). This is in line with numerous studies dealing with the quantification of shapes that emphasize the need for the use of several different shape descriptors (circularity, elipticity, orientability) [15,25,31]. This is conditioned by the fact that no descriptor is sufficiently reliable to perform shape characterization solely on the basis of it.…”
Section: Resultssupporting
confidence: 77%
See 1 more Smart Citation
“…3(c). This is in line with numerous studies dealing with the quantification of shapes that emphasize the need for the use of several different shape descriptors (circularity, elipticity, orientability) [15,25,31]. This is conditioned by the fact that no descriptor is sufficiently reliable to perform shape characterization solely on the basis of it.…”
Section: Resultssupporting
confidence: 77%
“…For this analysis, a mathematical tool is needed to describe the shapes quantitatively. For this purpose, a number of shape descriptors are developed to answer the question of how much a shape is similar to the corresponding observed shape, such as a circle (circularity), a square (squareness), an ellipse (ellipticity), a triangle (triangularity), a rectangle (rectangularity) [8,[15][16][17][18][19][20][21][22][23][24][25][26][27]. In order to be useful, each of the shape descriptors should ensure that the appropriate measure is invariant with respect to translation, rotation and scaling.…”
Section: Introductionmentioning
confidence: 99%
“…While center-of-mass motion is the standard quantity of which to keep track, , a good descriptor for shape is less obvious. Principal axes, moments, ellipticity, , and degree of asymmetry are some of the metrics that have been used to describe shapes. While each captures some important aspects of the shape, such single-number quantifications cannot describe internal degrees of freedom, such as twists and turns within the shape.…”
Section: Introductionmentioning
confidence: 99%
“…Nakon segmentacije potreban je matematički alat kojim bi se kvantitativno opisali oblici. Razvijaju se brojni deskriptori oblika koji daju odgovor na pitanje koliko je neki oblik sličan odgovarajućem posmatranom obliku kao što je krug (circularity), kvadrat (squareness), elipsa (ellipticity), trougao (triangularity), pravougaonik (rectangularity) [3,[10][11][12][13][14][15][16][17][18][19][20][21][22][23]. Kako bi bio upotrebljiv svaki od deskriptora oblika treba da obezbedi da odgovarajuća mera bude invarijantna u odnosu na translaciju, rotaciju i skaliranje.…”
Section: Uvodunclassified
“…Rezultat algoritma segmentacije je devet izolovanih nanočestica hematita koje su prikazane na slici 4 i numerisane brojevima (1)(2)(3)(4)(5)(6)(7)(8)(9). S druge strane, treba naglasiti da bi za bolju karakterizaciju oblika korisno bilo uključiti i druge deskriptore (cirkularnost, eliptičnost, orijentabilnost) [10,21,[30][31]. Kao primer možemo navesti veoma sličnu vrednost izduženosti nanočestica N 7 i N 2 dok seoblici ovih nanočestica ipak prilično razlikuju te mera izduženosti ne može biti jedini deskriptor koji se pouzdano može koristiti za karakterizaciju oblika.…”
Section: Slika 3 Filtrirana Mikroskopska Slika Nanočestica Hematite unclassified