Handover actions are part of our daily lives. Whether it is the milk carton at the breakfast table or tickets at the box office, we usually perform these joint actions without much conscious attention. The individual actions involved in handovers, that have already been studied intensively at the level of individual actions, are grasping, lifting, and transporting objects. Depending on the object’s properties, actors must plan their execution in order to ensure smooth and efficient object transfer. Therefore, anticipatory grip force scaling is crucial. Grip forces are planned in anticipation using weight estimates based on experience or visual cues. This study aimed to investigate whether receivers are able to correctly estimate object weight by observing the giver’s kinematics. For this purpose, handover actions were performed with 20 dyads, manipulating the participant role (giver/receiver) and varying the size and weight of the object. Due to the random presentation of the object weight and the absence of visual cues, the participants were unaware of the object weight from trial to trial. Kinematics were recorded with a motion tracking system and grip forces were recorded with customized test objects. Peak grip force rates were used as a measure of anticipated object weight. Results showed that receiver kinematics are significantly affected by object weight. The peak grip force rates showed that receivers anticipate object weight, but givers not. This supports the hypothesis that receivers obtain information about the object weight by observing giver’s kinematics and integrating this information into their own action execution.