Counterfactual explanations modify the feature values of an instance in order to alter its prediction from an undesired to a desired label. As such, they are highly useful for providing trustworthy interpretations of decision-making in domains where complex and opaque machine learning algorithms are utilized. To guarantee their quality and promote user trust, they need to satisfy the faithfulness desideratum, when supported by the data distribution. We hereby propose a counterfactual generation algorithm for mixed-feature spaces that prioritizes faithfulness through k-justification, a novel counterfactual property introduced in this paper. The proposed algorithm employs a graph representation of the search space and provides counterfactuals by solving an integer program. In addition, the algorithm is classifier-agnostic and is not dependent on the order in which the feature space is explored. In our empirical evaluation, we demonstrate that it guarantees k-justification while showing comparable performance to state-of-the-art methods in feasibility, sparsity, and proximity.