Electronic textiles (e-textiles) are a branch of wearable technology based on integrating smart systems into textile materials creating different possibilities, transforming industries, and improving individuals’ quality of life. E-textiles hold vast potential, particularly for use in personal protective equipment (PPE) by embedding sensors and smart technologies into garments, thus significantly enhancing safety and performance. Although this branch of research has been active for several decades now, only a few products have made it to the market. Achieving durability, reliability, user acceptance, sustainability, and integration into current manufacturing processes remains challenging. High levels of reliability and user acceptance are critical for technical textiles, such as those used in PPE. While studies address washing reliability and field tests, they often overlook end user preferences regarding smart textiles. This paper presents a narrow fabric-based e-textile system co-developed by engineers, garment and textiles’ manufacturers, and firefighters. It highlights material choices and integration methods, and evaluates the system’s reliability, sustainability, and user experience, providing comprehensive insights into developing and analyzing e-textile products, particularly in the PPE field.