2023
DOI: 10.1140/epjc/s10052-023-11734-1
|View full text |Cite
|
Sign up to set email alerts
|

Measuring the Hubble constant with cosmic chronometers: a machine learning approach

Abstract: Local measurements of the Hubble constant ($$H_0$$ H 0 ) based on Cepheids e Type Ia supernova differ by $$\approx 5 \sigma $$ ≈ 5 σ from the estimated value of $$H_0$$ H 0 from Planck CMB observations under $$\… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 130 publications
(86 reference statements)
0
1
0
Order By: Relevance
“…Then, real-world data are presented to the network, which predicts the characteristic properties in the real data. Successful applications include measuring galactic star formation rates (e.g., Delli Veneri et al 2019;Simet et al 2021;Euclid Collaboration et al 2023;Santos-Olmsted et al 2023), metallicities (e.g., Liew-Cain et al 2021), stellar masses and redshifts (e.g., Bonjean et al 2019;Wu & Boada 2019;Surana et al 2020), masses of galaxy clusters (e.g., Ntampaka et al 2015), cosmological parameters from weak lensing (e.g., Gupta et al 2018), and large-scale structure formation (e.g., He et al 2018), identifying reionization sources (e.g., Hassan et al 2019) and the duration of reionization (e.g., La Plante & Ntampaka 2019), and constraining cosmological parameters (e.g., Fluri et al 2019;Ribli et al 2019;Hassan et al 2020;Matilla et al 2020;Ntampaka et al 2020;Ntampaka & Vikhlinin 2022;Andrianomena & Hassan 2023;Bengaly et al 2023;Lu et al 2023;Novaes et al 2024;Qiu et al 2023). Recently, Monadi et al (2023) applied Gaussian processes to Sloan Digital Sky Survey (SDSS) DR12 quasar spectra to detect C IV absorbers and measure their VP parameters.…”
Section: Introductionmentioning
confidence: 99%
“…Then, real-world data are presented to the network, which predicts the characteristic properties in the real data. Successful applications include measuring galactic star formation rates (e.g., Delli Veneri et al 2019;Simet et al 2021;Euclid Collaboration et al 2023;Santos-Olmsted et al 2023), metallicities (e.g., Liew-Cain et al 2021), stellar masses and redshifts (e.g., Bonjean et al 2019;Wu & Boada 2019;Surana et al 2020), masses of galaxy clusters (e.g., Ntampaka et al 2015), cosmological parameters from weak lensing (e.g., Gupta et al 2018), and large-scale structure formation (e.g., He et al 2018), identifying reionization sources (e.g., Hassan et al 2019) and the duration of reionization (e.g., La Plante & Ntampaka 2019), and constraining cosmological parameters (e.g., Fluri et al 2019;Ribli et al 2019;Hassan et al 2020;Matilla et al 2020;Ntampaka et al 2020;Ntampaka & Vikhlinin 2022;Andrianomena & Hassan 2023;Bengaly et al 2023;Lu et al 2023;Novaes et al 2024;Qiu et al 2023). Recently, Monadi et al (2023) applied Gaussian processes to Sloan Digital Sky Survey (SDSS) DR12 quasar spectra to detect C IV absorbers and measure their VP parameters.…”
Section: Introductionmentioning
confidence: 99%