ÖzTanecikli Hesaplama yöntemlerinden biri olan Kaba Kümeler Teorisi 1980'li yılların başlarında Zdzislaw Pawlak tarafından, belirsiz ve muğlak bilgi ile uğraşmak için ortaya atılmıştır. Belirsizliğin en temel nedenlerinden biri, belirsizliğin ilgili olduğu alanın tüm değişkenlerini gözlemlemenin güçlüğünden kaynaklanmasıdır. Ayrıca, gözlemlenebilen değişkenlerin ait oldukları dünya deterministik olmasına rağmen, rastgele davranış gösterir. Kaba kümeler teorisi evrende her bir nesneden bilgi elde edebileceğimiz varsayımı üzerine kuruludur. Teorinin ortaya atılmasından günümüze kadar geçen süre içerisinde kaba kümeler teorisi üzerinde birçok çalışma yapılmıştır. Bunlardan biri de, 2000'li yılların başlarında kuramı ortaya atan Pawlak tarafından sunulan akış çizgeleridir. Akış çizgeleri; verilerden akıl yürütmek ve akıllı veri analizi için veri tablolarından bilgi akışı dağılımını temsil etmek amacıyla grafiksel bir çerçeve sunmaktadır. Pawlak, akış çizgelerini Łukasiewicz tarafından önerilen olasılığı mantıksal terimlerle ifade etmeyi öneren kavramdan yola çıkarak açıklamıştır. Akış çizgeleri teorik bakış açısından, Łukasiewicz'in fikirlerinin bir genellemesi olarak görülebilir. Kaba küme teorisine dayalı akış çizgeleri, belirsiz ve eksik bilgi ile ilgilenen diğer yöntemler ile de örtüşmektedir. Bunlardan birisi de karmaşık alanlarda belirsizliği yönetmek için anlamsal bir modelleme aracı olarak kullanılan Bayes ağlarıdır. Kaba küme teorisi tarafından sunulan Bayes teoremine bakış, herhangi bir veri kümesinin toplam olasılık kuralı ve Bayes teoremini karşıladığını ortaya koymaktadır. Bayes teoremi, yeni bir kanıtın varlığında o ana kadar olan inançlarımızı nasıl değiştirmemiz gerektiğini açıklayan matematiksel bir kuraldır. Diğer bir deyişle, yeni bilgiler ile hali hazırda bulunan verilerin ve bilgilerin birleştirilmesini sağlar. Bu nedenle, akış çizgelerini Bayes ağlarının özel bir durumu olarak görebilmek mümkündür. Ayrıca, akış çizgeleri, karar tablolarından elde edilen kuralları Yönlendirilmiş Çevrimsiz Çizge (YDÇ) olarak düzenleyerek geleneksel kaba küme araştırmasını genişletir. Pawlak'ın akış çizgeleri, bilgi akışını görselleştirme yetenekleri nedeniyle hem pratik hem de teorik birçok araştırmacının ilgisini çekmiş ve birçok alanda başarı ile uygulanmıştır. Bu çalışmada, akış çizgelerinin temel kavramları ve özellikleri incelenmiş; akış çizgelerinin Bayes teoremi ve Bayes ağları ile ilişkisi gösterilmiştir. Ayrıca, akış çizgeleri ile ilgili geniş bir literatür araştırması yapılmış ve ilgili alanda yer alan uygulamar ile teorik çalışmalara değinilmiştir. Çalışmanın son bölümünde, bir uygulama üzerinde, karar algoritması, sonlu bir "Eğer….O halde…." şeklinde karar kuralları kümesi olarak ifade edilmiştir. Ayrıca, bu karar kurallarının taşıdığı anlamlar Bayes teoremini sağlayan güç, kesinlik ve kapsama katsayıları ile ifade edilmiş ve değerlendirilmiştir. Burada her karar kurallarınıni olasılıksal özellikleri ortaya çıkardığı ve Bayes teoremi ile toplam olasılık kuralını karşıladığı görülmektedir.