Appreciating the rapid advancement and ubiquity of generative AI, particularly ChatGPT, a chatbot using large language models like GPT, we endeavour to explore the potential application of ChatGPT in the data collection and annotation stages within the Reactome curation process. This exploration aimed to create an automated or semi-automated framework to mitigate the extensive manual effort traditionally required for gathering and annotating information pertaining to biological pathways, adopting a Reactome “reaction-centric” approach. In this pilot study, we used ChatGPT/GPT4 to address gaps in the pathway annotation and enrichment in parallel with the conventional manual curation process. This approach facilitated a comparative analysis, where we assessed the outputs generated by ChatGPT against manually extracted information. The primary objective of this comparison was to ascertain the efficiency of integrating ChatGPT or other large language models into the Reactome curation workflow and helping plan our annotation pipeline, ultimately improving our protein-to-pathway association in a reliable and automated or semi-automated way. In the process, we identified some promising capabilities and inherent challenges associated with the utilisation of ChatGPT/GPT4 in general and also specifically in the context of Reactome curation processes. We describe approaches and tools for refining the output given by ChatGPT/GPT4 that aid in generating more accurate and detailed output.