Skin cancer is a disease that starts in skin cells characterized by uncontrolled growth that can attack skin tissue. Although it has a high cure rate if treated in a timely manner, a delay in diagnosis can have serious consequences. The use of computer technology, especially Artificial Intelligence (AI), has played an important role in improving health services, including in the context of skin cancer. New innovations in the classification and detection of skin cancer using artificial neural networks have led to significant improvements in diagnosis and treatment. One promising approach is using the InceptionV3 algorithm, which has high accuracy and is capable of processing high-resolution images. This study aims to implement InceptionV3 to classify two types of skin cancer, namely malignant and benign, with an emphasis on improving accuracy performance. With the pre-processing process, namely augmentation and the addition of several features, this study aims to provide accurate and efficient results in skin cancer classification. The results of this study can have a positive impact in increasing the accuracy of early detection of skin cancer, especially by future researchers.