Exposure to heterocyclic aromatic amines (HAAs), carcinogens produced when meat is cooked at high temperatures, is an emerging risk factor for colorectal cancer (CRC). In a cross-sectional study of 342 patients undergoing a screening colonoscopy, the role of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx), the three most abundant HAAs found in cooked meats, and total mutagenic activity in cooked meats were examined in relation to colorectal adenoma risk. Given that genetic differences in the ability to biotransform HAAs and repair DNA are postulated to modify the HAA-CRC relationship, gene-diet interactions were also examined. Among the total study population, no relationships were observed between dietary HAAs or meat mutagenicity, and colorectal adenoma risk; however, in males, positive associations between dietary HAAs/meat mutagenicity exposures and adenoma risk were suggestive of a relationship. In a separate analysis, polymorphisms in CYP1B1 were found to be associated with colorectal adenoma risk. Additionally, gene-diet interactions were observed for dietary PhIP and polymorphisms in CYP1B1 and XPD, dietary DiMeIQx and XPD polymorphisms, and meat mutagenicity exposure and CYP1B1 polymorphisms. Overall, increased colorectal adenoma risk was observed with higher HAA/meat mutagenicity exposures among those with polymorphisms which confer greater activity to biotransform HAAs and/or lower ability to repair DNA. This research supports the link between dietary HAAs and genetic susceptibility in colorectal adenoma etiology. The vast majority of CRCs arise from colorectal adenomas; thus, the results of this study suggest that changes in meat preparation practices limiting the production of HAAs may be beneficial for CRC prevention.