Additive manufacturing is rapidly growing, where selective laser sintering technology dominates for industrial use. In the case of polymer selective laser sintering, polyamide is the standard material. However, polyamide is an electrical insulator, and for specific applications, it would be desirable to be able to manufacture polymer-based electrically conductive parts. Electromagnetic Compatibility is one of the most significant targeted applications, where the introduction of electric vehicles raises new electromagnetic compatibility demands. The goal is, therefore, to develop an electrically conductive composite material for selective laser sintering using graphene as the additive. Composites are prepared by mixing polyamide, graphene, and additives with varying graphene/polyamide ratios. The aim of this investigation is the laserassisted processing of the resulting graphene/polyamide composites with various parameters to sinter the material, forming a solid conductive structure. The structure is characterized using SEM and resistance measurements. Results show sheet resistance values of about 700Ω/sq after laser-assisted processing with good powder flowability.