is study evaluated the influence of reinforcement fiber type and microsilica content on the performance of latex-modified fiberreinforced roller-compacted rapid-hardening cement concrete (LMFRCRSC) for a concrete pavement emergency repair. Experimental variables were the microsilica substitution ratio (1, 2, 3, and 4%), and the reinforcement fiber (jute versus macrosynthetic fiber). In the tests, compressive, flexural, and splitting tensile strength; chloride ion penetration resistance; and abrasion resistance were assessed. From the compressive and flexural strength tests with microsilica substitution, the 4-hour curing strength decreased as the microsilica substitution ratio increased. From the chloride ion penetration test, as the microsilica substitution ratio increased, chloride ion penetration decreased. e abrasion resistances increased with the substitution ratio of microsilica increase. Based on these test results, microsilica at a substitution ratio of 3% or less and macrosynthetic fiber as the reinforcement improved the performance of LMFRCRSC for a concrete pavement emergency repair and satisfied all of the target strength requirements.