Biodegradable paper cups coated with rice bran wax and whey protein isolate were designed to package popcorn. Coatings with different concentrations of whey protein isolate (5.5, 7.75, and 10% w/v) and rice bran wax (0.2, 0.4, and 0.6% w/v) were applied on the outer surface of the paper cups. Thickness, color changes, Young's modulus and tensile strength, water vapor transmission rate (WVTR) of the coated and uncoated cups, and also popcorns properties (pH, texture, and sensory properties) were evaluated. Water vapor transmission rate, Young's modulus, thickness, total color change index, and tensile strength of coated cups with the optimal coating formulation was 19.785 (g/m2 day), 11.810 (MPa), 276.583 (µm), 1.839, and 11.222 (MPa), respectively. The results showed that paper cup coating increased thickness and yellowness and reduced the brightness, Young's modulus, and WVTR. Coating had a positive effect on the pH and texture of popcorns packaged in coated cups than samples packed in uncoated cups (p < .05). With increasing storage time due to moisture absorption, popcorn changes from crisp to viscoelastic and increases tissue firmness (p < .05). Popcorns’ taste in uncoated cups had gained significantly lower scores by panelists compared with the samples packed in coated cups. There was a significant decrease in the general acceptance of popcorn during storage and also the type of coating used in the packaging cup (p < .05). Storage time and type of coating showed no significant effect on the moisture content, odor, and appearance of popcorn. In sensory evaluation, the coated packaging increased the taste, no difference in odor and appearance, and increased the overall acceptance of popcorn compared to the sample in uncoated cups. In general, the results showed that paper cup coating could be a new approach for barrier property improvement in paper‐based food packaging and extending the shelf life of the products.