Rubberwood is widely planted for latex production. At the cessation of latex yield it becomes a viable timber source in the wood industry. While good bonding performance of rubberwood has been reported, quantitative information to support this statement is missing. In this study, the tensile shear strength (TSS) and wood failure percentage (WFP) of unmodified and acetylated rubberwood in both wet and dry conditions were examined. Three frequently used adhesives were selected: one-component polyurethane (1C PUR), melamine-urea-formaldehyde (MUF), and phenol-resorcinol-formaldehyde (PRF). Furthermore, fatigue behaviour was analysed for PRF-bonded samples by cyclic loading. Results showed that in dry state, the TSS and WFP of acetylated rubberwood is comparable to the unmodified samples for all adhesives. In wet condition, the performance of bonded rubberwood was improved by acetylation. Cyclic loading revealed comparable fatigue behaviour of bonded unmodified and acetylated rubberwood. This investigation provides first quantitative information on the performance of bonded rubberwood, which can be a valuable input for the production of laminated timber products for structural purposes.