The application of copper surface coating to plastic structures offers numerous advantages, including high thermal and electrical conductivity, improved mechanical properties, good corrosion resistance, decorative applications, and enhancements in working temperatures. Besides these advantages, producing plastic structures with 3D printing and applying surface coating enables the final structures to become functional plastic structures adaptable to different fields. In this study, 3D plastic structures were produced using the fused deposition modeling method. Pristine, dichloromethane dipping, dichloromethane vapor, cold oxygen plasma, and mechanical abrasion surface treatments were applied to determine the optimal surface treatment between copper and the plastic substrate before copper coating. Subsequently, copper coating on plastic structures was completed using the DC sputtering technique. The surface topography, optical, electrical, and structural properties of the produced plastic structures were examined. According to X-ray diffraction analysis results, the (111), (200), (220), and (311) crystal planes confirm the presence of copper. The electrical conductivity values of the plastic structures reached 7.87 × 105 S/m. Contact angle measurement results indicate that the applied surface treatments increased the contact angles to 88.309°, leading the coated plastic structures to exhibit a more hydrophobic behavior.