Background: Resuscitative endovascular balloon occlusion of the aorta (REBOA) may be a novel intervention to improve cardiopulmonary resuscitation (CPR) quality during cardiac arrest. Zone 1 supraceliac aortic occlusion improves coronary and cerebral blood flow. It is unknown if Zone 3 occlusion distal to the renal arteries offers a similar physiologic benefit while maintaining blood flow to organs above the point of occlusion. Methods: Fifteen swine were anesthetized, instrumented, and placed into ventricular fibrillation. Mechanical CPR was immediately initiated. After 5 min of CPR, Zone 1 REBOA, Zone 3 REBOA, or no intervention (control) was initiated. Hemodynamic variables were continuously recorded for 30 min. Results: There were no significant differences between groups before REBOA deployment. Once REBOA was deployed, Zone 1 animals had statistically greater diastolic blood pressure compared to control (median [IQR]: 19.9 mmHg [9.5-20.5] vs 3.9 mmHg [2.4-4.8], p = .006). There were no differences in diastolic blood pressure between Zone 1 and Zone 3 (8.6 mmHg [5.1-13.1], p = .10) or between Zone 3 and control (p = .10). There were no significant differences in systolic blood pressure, cerebral blood flow, or time to return of spontaneous circulation (ROSC) between groups. Conclusion: In our swine model of cardiac arrest, Zone 1 REBOA improved diastolic blood pressure when compared to control. Zone 3 does not offer a hemodynamic benefit when compared to no occlusion. Unlike prior studies, immediate use of REBOA after arrest did not result in an increase in ROSC rate, suggesting REBOA may be more beneficial in patients with prolonged no-flow time.