This paper presented an experimental and numerical study of functionally graded materials made by the permanent casting method and in three models with different mixing ratios between aluminum and zinc alloys (FGM1, FGM2, and FGM3) as in figure 1. In the permanent casting process, three models of the functionally graded material were produced and mechanical tests were conducted on them such as tensile and hardness tests, and the behavior of tensile strength, yield strength, elastic modulus, and fatigue was analyzed on them. The fatigue test was conducted at six levels of load and at room temperature. Simulations were carried out for the three models and a simulated fatigue test for the functionally graded material into the Ansys program. The results of the fatigue test showed an apparent effect of the different mixing ratios of the functional-grade material. As well as the numerical results were, close to the experimental results. There was an improvement in the fatigue life compared to FGM3, by 23% to FGM2. In addition, the fatigue life of the FGM3 of 11% higher than from the FGM1 model. In addition to that, which is important, the improvement in the fatigue life characteristics of the third type was 36% compared to the alloys from which the functionally graded materials were made.