Fishes have learned how to achieve outstanding swimming performance through the evolution of hundreds of millions of years, which can provide bio-inspiration for robotic fish design. The premise of designing an excellent robotic fish include fully understanding of fish locomotion mechanism and grasp of the advanced control strategy in robot domain. In this paper, the research development on fish swimming is presented, aiming to offer a reference for the later research. First, the research methods including experimental methods and simulation methods are detailed. Then the current research directions including fish locomotion mechanism, structure and function research and bionic robotic fish are outlined. Fish locomotion mechanism is discussed from three views: macroscopic view to find a unified principle, microscopic view to include muscle activity and intermediate view to study the behaviors of single fish and fish school. Structure and function research is mainly concentrated from three aspects: fin research, lateral line system and body stiffness. Bionic robotic fish research focuses on actuation, materials and motion control. The paper concludes with the future trend that curvature control, machine learning and multiple robotic fish system will play a more important role in this field. Overall, the intensive and comprehensive research on fish swimming will decrease the gap between robotic fish and real fish and contribute to the broad application prospect of robotic fish.