Raman-gain-enhanced near-field optomechanical transduction between a movable optical cavity and SiN-membrane resonator is demonstrated. The Raman gain compensates for the intrinsic loss of the cavity and amplifies the optomechanical transduction, through which the membrane vibration is sensed using a high-Q whispering-gallery-mode optical cavity evanescently. The optical Q of the cavity resonance is improved with respect to the optical pump power, which results in an increase in the optomechanically transduced vibration signals of the mechanical resonator. Our near-field optomechanical coupling approach with optical gain realizes highly sensitive displacement measurement in nano- and micro-mechanical resonators consisting of arbitrary materials and structures.