Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Concrete is the most widely used construction material in the world. It is now possible to construct structures out of concrete because this durable compound that consists of water, aggregate, and Portland cement not only gives us many scopes of design but also has a very high compressive strength at a low cost. This paper deals with alternative materials for the most common construction material, cement-based concrete and polymer concrete (PC), containing waste tin fibres. The study covers the fabrication of polymer concrete and the execution of three tests: compressive strength, flexural tensile, and splitting tensile. Tests were conducted to determine the mechanical properties of the PC, and the results were analysed and evaluated on several PC specimens with different ratios of waste tin fibre. The results showed that using waste tin as fibre reinforcement in PC would substantially enhance the overall mechanical performance. Specifically, the optimum amount of waste tin as reinforcement in PC was 0.16% for compressive and splitting tensile strengths, while 0.20% was the optimum fibre loading for the flexural tensile strength. In this case, a positive outcome was found at a constant resin-to-filler ratio of 40:60 by volume and a matrix-to-aggregate ratio of 1:1.35 by weight.
Concrete is the most widely used construction material in the world. It is now possible to construct structures out of concrete because this durable compound that consists of water, aggregate, and Portland cement not only gives us many scopes of design but also has a very high compressive strength at a low cost. This paper deals with alternative materials for the most common construction material, cement-based concrete and polymer concrete (PC), containing waste tin fibres. The study covers the fabrication of polymer concrete and the execution of three tests: compressive strength, flexural tensile, and splitting tensile. Tests were conducted to determine the mechanical properties of the PC, and the results were analysed and evaluated on several PC specimens with different ratios of waste tin fibre. The results showed that using waste tin as fibre reinforcement in PC would substantially enhance the overall mechanical performance. Specifically, the optimum amount of waste tin as reinforcement in PC was 0.16% for compressive and splitting tensile strengths, while 0.20% was the optimum fibre loading for the flexural tensile strength. In this case, a positive outcome was found at a constant resin-to-filler ratio of 40:60 by volume and a matrix-to-aggregate ratio of 1:1.35 by weight.
Coal-fired power plants (CFPPs) are Malaysia’s primary electricity source, but their emissions adversely affect human health, organism growth, climate change, and the environment. The carbon, hydrogen, and sulphur content of coal make it a viable option for electricity generation. However, the by-products from leaching, volatilisation, melting, decomposition, oxidation, hydration, and other chemical reactions significantly negatively impact the environment and human health. This study aims to quantify the emissions from a coal-fired power plant, investigate the interplay between different emissions, simulate the dispersion of emissions, and assess their health impact through a health risk assessment. The results indicate that SO2 is the primary contributor to emissions and its impact on human health is a concern. The health effects, both chronic and acute, are more pronounced in children than in adults. This study combines real-time emissions data and simulations to assess emissions’ health impact, raising awareness about the emissions from coal-fired power plants. Furthermore, the findings can potentially enhance working conditions for employees and promote environmental health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.