For additive manufactured parts, it is important to measure homogeneity and demonstrate representative parts can be printed faster while maintaining key mechanical properties. In this work, a multiscale characterization of microstructural and mechanical properties was carried out to gain a thorough understanding of a range of powder bed fusion-laser beam (PBF-LB)-manufactured Scalmalloy for future optimization of the processing parameters. The relationship between microstructure, including porosity, grain structure, and precipitates, and mechanical properties, is investigated. The stress-relieved samples were characterized mainly using scanning electron microscopy (SEM) suite, uniaxial tensile tests and nanoindentation. The results show the multiple strengthening mechanisms in Scalmalloy, including solid solution strengthening, grain size, precipitates and dislocations strengthening, demonstrated through a combination of the nanoindentation measurements with microstructural analysis at the local scale. The current work suggests potential mechanisms for further improvement of the strength and ductility in PBF-LB-Scalmalloy.