The applicability of Weibull statistics to the condition assessment of cast iron water distribution pipes has been considered. The effect of Weibull modulus, characteristic strength, sample size and mode of loading (tension or flexure) on the strength of cast iron water distribution pipes is investigated. The strength distribution of cast iron samples cut from sections of five different water distribution pipes recovered from the ground have been characterized. Strengths have been measured in flexure, at two different temperatures (ambient and 0 degrees C), and in tension at ambient temperature using two different sample sizes. It is shown that characteristic strength values in flexure decrease with increasing size of graphite flake and that there is no significant difference between the results at the two temperatures investigated. For samples of the same volume tested in tension and flexure, the reduced strength measured in tension is consistent with Weibull predictions. However, the strength of large samples tested in tension was not significantly different from the small samples, perhaps because the samples were of the same thickness and conventional Weibull scaling is not applicable. Finally, using a method which treats a large pipe as an assembly of small samples, the strength distributions from the small samples tested in tension are used to make a prediction of the strengths of 1 m span sections of pipe loaded in three-point bending, which were reported in previous work. The predicted pipe strengths are close to the lower end of the measured pipe strength distribution. Overall, this work suggests that Weibull analysis is a useful tool to examine the strength distribution of removed from cast iron water pipes and so has the potential to contribute in the assessment of asset condition