PurposeThe absorption of moisture/water can affect the mechanical and thermal properties of polymers and polymer composites as many polymers, mainly polyamide thermoplastics, are sensitive to environmental humidity and can absorb a large amount of moisture. This paper investigates the effect of water molecules' absorption on mechanical and thermal properties of polyamide6/hexagonal boron nitride (PA6/h-BN) composites.Design/methodology/approachThe PA6/h-BN composites were exposed to an open environment and water for 15 days to analyse the effect of humidity/water molecules' absorption on mechanical and thermal properties. The tensile strength, hardness and impact strength of materials were measured and compared. The scanning electron microscopy (SEM), x-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses were utilized to see the influence of water absorption on microstructure, crystallinity and glass transition temperatures.FindingsAfter exposing materials to an open environment and water, the tensile strength and hardness were found to decline, while improvement in impact strength was noticed. SEM characterization revealed the formation of voids/pockets in water-immersed materials. DSC analysis revealed the loss in glass transition temperatures, and XRD analysis revealed the loss in crystallinity of water-immersed materials.Originality/valueEnvironmental conditions vary according to the geographical areas, and it varies in many countries throughout the year. Polyamides are sensitive to the environmental humidity and can absorb a large amount of moisture from the environment. It becomes necessary to test these materials in their original working conditions, and sometimes it is mandatory to see the effects of extreme environmental conditions on a component. In this article, efforts have been made to investigate the influence of extreme humidity/water conditions on thermo-mechanical properties of PA6/h-BN composites.