Compared to commonly use carbonaceous materials such as carbon nanotubes or graphene nanoplatelets, hydrothermal carbons (HTCs) are obtained with environmentally friendly approaches at a lower cost. Although HTCs have a wide application area such as batteries, magnetic materials, supercapacitors, adsorbent materials, etc., there are few studies on the usage of HTC as reinforcement material for composites. In this study, polyethylene matrix composites containing different amounts (0.5 wt.%, 1 wt.%, 2 wt.%) of HTCs were fabricated via the injection molding process. The effect of HTCs content on the wear properties of polyethylene matrix composites was investigated. Reciprocating wear tests were performed applying different loads at dry sliding conditions. To correlate with wear results, the mechanical properties of samples were determined by tensile and impact tests. Also, FTIR and DTA analyzes were conducted to understand the effect of HTCs on the structural and thermal properties of composites. Results show that the addition of HTCs led to the enhancement of mechanical and tribological properties of polyethylene at lower amount reinforcement ratios. Thus, it can be said that HTCs could be alternative carbonaceous reinforcement material for polymer matrix composites.