ElsevierVallés Lluch, A.; Arnal Pastor, MP.; Martínez Ramos, C.; Vilariño Feltrer, G.; Vikingsson, L.; Castells Sala, C.; Semino, CE.... (2013). Combining self-assembling peptide gels with three-dimensional elastomer scaffolds. Acta Biomaterialia. 9 (12) Abstract: Some of the problems raised by the combination of porous scaffolds and self-assembling peptide (SAP) gels as constructs for tissue engineering applications are for the first time addressed. Scaffolds of poly(ethyl acrylate) and the SAP gel RAD16-I were employed. The in situ gelation of the SAP gel inside the pores of the scaffolds was studied. The scaffold-cum-gel constructs were characterized morphologically, physico-chemically and mechanically. The possibility of incorporating an active molecule (bovine serum albumin, taken here as a model molecule for others) in the gel within the scaffold's pores was assessed, and the kinetics of its release in PBS was followed. Cell seeding and colonization of these constructs was preliminary studied with L929 fibroblasts and checked afterwards with sheep adipose-tissue derived stem cells (ASCs) intended for further preclinical studies. Static (conventional) and dynamically assisted seedings were compared for bare scaffolds and the scaffoldcum-gel constructs. The SAP gel inside the pores of the scaffold significantly improved the uniformity and density of cell colonization of the 3D structure. These constructs could be of use in different advanced tissue engineering applications where, apart from a cell-friendly ECM-like aqueous environment, a larger-scale three-dimensional structure able to keep the cells in a specific place, give mechanical support and/or conduct spatially the tissue growth could be required.
COMBINING SELF-ASSEMBLING PEPTIDE GELS WITH 3D ELASTOMER SCAFFOLDSA.
AbstractSome of the problems raised by the combination of porous scaffolds and selfassembling peptide (SAP) gels as constructs for tissue engineering applications are for the first time addressed. Scaffolds of poly(ethyl acrylate) and the SAP gel RAD16-I were employed. The in situ gelation of the SAP gel inside the pores of the scaffolds was studied. The scaffold-cum-gel constructs were characterized morphologically, physicochemically and mechanically. The possibility of incorporating an active molecule (bovine serum albumin, taken here as a model molecule for others) in the gel within the scaffold's pores was assessed, and the kinetics of its release in PBS was followed. Cell intended for further preclinical studies. Static (conventional) and dynamically assisted seedings were compared for bare scaffolds and the scaffold-cum-gel constructs. The SAP gel inside the pores of the scaffold significantly improved the uniformity and density of cell colonization of the 3D structure. These constructs could be of use in different advanced tissue engineering applications where, apart from a cell-friendly ECM-like aqueous environment, a larger-scale three-dimensional structure able to keep the cells in a specific place, give mechanical support and/o...