The effects of time of sugar beet root storage on the parameters determined by impact testing were studied. The 9 mm diameter and 20 mm high cylindrical samples were cut crosswise and lengthwise along the root axis. The impact velocity was 1 m s-1 and the change in the response force over time was observed at both ends of the sample. The measurements were made directly after harvesting and after 24, 48, 96 and 120 h of storage at room temperature. Failure stress and strain, impact energy, absorbed energy, Young's modulus and shock wave speed were determined in the sample tissue from the change in the response force at both ends of the sample. A drop of 40% in the average values of the energy required to damage the samples was observed during 120 h of storage. A similar dependence was found for the energy absorbed by the sample as evidenced by the greater susceptibility of the roots to impact loads. The experiment confirms the importance of critical stress criterion for cylindrical samples of sugar beet. The velocities of shock wave propagation obtained from the samples during impact were in the range of 220-384 m s-1 and were not correlated with the other experimental parameters. K e y w o r d s: sugar beet root, impact energy, absorbed energy, storage time