A number of innovative technologies are offered in the literature to the purpose of additive manufacturing. Among them, directed metal deposition of wire by means of laser beam is receiving increasing interest since important advantages are benefited in comparison with its powder-based counterpart. Nevertheless, a number of issues must be addressed: this paper aims to provide further understanding of the technology to give grounds to actual applications in an industrial environment. Single trace deposition of Ti-6Al-4V wire over homologous substrate is investigated; the laser power, the processing speed, and the amount of fed metal is changed. The geometrical responses (i.e., trace width, height, depth, shape angle, and dilution) in the cross-section are investigated as a function of the processing parameters. Namely, a global clear view of the responses is given as a function of power and deposited wire mass per unit time. Furthermore, possible occurrence of micro pores is discussed with respect to common international standards. Eventually, an investigation about changes in both the microstructure and the microhardness is addressed: an increase of hardness in the fusion zone is noticed as a consequence of non-diffusional martensitic transformation of the original α-β phases upon rapid cooling, with reduced extent of the heat-affected zone below 0.4 mm.