The addition of bioactive glasses to a Y:TZP matrix represents a feasible alternative to provide bioactivity to this material and optimize osseointegration. This work evaluated the effect of the BG concentration (0 and 10 wt%) and the sintering temperature (1200°C and 1300°C) on the microstructure, relative density, and flexural strength of the composite Y:TZP/BG. The Y:TZP and Y:TZP/BG powders were uniaxially pressed and sintered at 1200°C or 1300°C for 1 h. The microstructure was characterized by X‐ray diffraction analysis, scanning electron microscopy, and energy‐dispersive X‐ray Spectroscopy. Relative density was calculated from density values obtained using the Archimedes’ principle. For the flexural strength, specimens (n = 6) were fractured in a biaxial flexural setup using a piston‐on‐three‐balls fixture in a universal testing machine. Bioactivity test was performed in simulated body fluid solution. The results suggested that BG addition decreased the grain size of the composite, increased porosity and caused a significant decrease in the relative density and flexural strength. Crystalline phases of calcium stabilized cubic zirconia and sodium zirconium silicate were formed after the addition of BG. Finally, it was concluded that composite specimens sintered at 1300°C showed the highest density values and larger grains compared to those sintered at 1200°C.