Among all the computational techniques (Density Functional Theory, Molecular Dynamics, Monte-Carlo Simulations, Nanothermodynamics) used to investigate the properties of nanoparticles, nanothermodynamics is the most unusual one. Indeed, most people still thing that thermodynamics does not apply at the nanoscale; nonetheless, thermodynamic concepts can still be applied at the nanoscale to predict various properties of nanoparticles like melting temperature, energy bandgap . . . In this review, we first introduce the fundamental concepts and methods of nanothermodynamics starting from Hill's contributions to the most recent developments focusing specifically on the relationship between the material property and the following parameters as quantum statistics (Fermi-Dirac or Bose-Einstein), size and shape of the nanoparticle.
ARTICLE HISTORY