Organized biannually in the Swiss Alps since 1984, the “Patrouille des Glaciers” (PDG) is one of the most challenging long-distance ski mountaineering (skimo) team competitions in the world. The race begins in Zermatt (1,616 m) and ends in Verbier (1,520 m), covering a total distance of 53 km with a cumulated 4,386 m of ascent and 4,482 m of descent. About 4,800 athletes take part in this competition, in teams of three. We hereby present the performance analysis of the uphill parts of this race of a member (#1) of the winning team in 2018, setting a new race record at 5 h and 35 min, in comparison with two amateur athletes. The athletes were equipped with the Global Navigation Satellite System (GNSS) antenna, a heart rate monitor, and a dedicated multisensor inertial measurement unit (IMU) attached to a ski, which recorded spatial-temporal gait parameters and transition events. The athletes' GNSS and heart rate data were synchronized with the IMU data. Athlete #1 had a baseline VO2 max of 80 ml/min/kg, a maximum heart rate of 205 bpm, weighed 69 kg, and had a body mass index (BMI) of 21.3 kg/m2. During the race, he carried 6 kg of gear and kept his heart rate constant around 85% of max. Spatiotemporal parameters analysis highlighted his ability to sustain higher power, higher pace, and, thus, higher vertical velocity than the other athletes. He made longer steps by gliding longer at each step and performed less kick turns in a shorter time. He spent only a cumulative 5 min and 30 s during skins on and off transitions. Skimo performance, thus, requires a high aerobic power of which a high fraction can be maintained for a prolonged time. Our results further confirm earlier observations that speed of ascent during endurance skimo competitions is a function of body weight and race gear and vertical energy cost of locomotion, with the latter function of climbing gradient. It is also the first study to provide some reference benchmarks for spatiotemporal parameters of elite and amateur skimo athletes during climbing using real-world data.