This paper is devoted to study the behavior, in the range of linear viscoelasticity, of shear flexible thin-walled beam members constructed with composite laminated fiber-reinforced plastics. This work appeals to the correspondence principle in order to incorporate in unified model the motion equations of a curved or straight shear-flexible thin-walled beam member developed by the authors, together with the micromechanics and macromechanics of the reinforced plastic panels. Then, the analysis is performed in the Laplace or Carson domains. That is, the expressions describing the micromechanics and macromechanics of a plastic laminated composites and motion equations of the structural member are transformed into the Laplace or Carson domains where the relaxation components of the beam structure (straight or curved) are obtained. The resulting equations are numerically solved by means of finite element approaches defined in the Laplace or Carson domains. The finite element results are adjusted with a polynomial fitting. Then the creep behavior is obtained by means of a numerical technique for the inverse Laplace transform. Predictions of the present methodology are compared with experimental data and other approaches. New studies are performed focusing attention in the flexural-torsional behavior of shear flexible thin-walled straight composite beams as well as for thin-walled curved beams and frames.