Emodin (EMO) not only has the effect of anti-cholestasis, but also has been reported to cause liver injury. We speculate that EMO has a hepatoprotective effect at a certain dose, while high doses can show liver injury, but the mechanism is still unclear. The farnesoid X receptor (Fxr) is the master bile acid nuclear receptor. Recent studies have reported that Sirtuin 1 (Sirt1) can regulate the activities of Fxr. The purpose of the current study was to investigate the mechanism of EMO against ANIT-induced liver injury based on Sirt1/Fxr signaling pathway. The ANIT-induced cholestatic rats were used with or without EMO treatment. Serum biochemical indicators, as well as liver histopathological changes were examined. The genes expressions of Sirt1, Fxr, Shp, Bsep and Mrp2were detected. The expressions of Sirt1, Fxr and their downstream related genes were investigated in vitro. The results showed that EMO significantly alleviated ANIT-induced liver injury in rats, and increased Sirt1, Fxr, Shp, Bsep and Mrp2 gene expression in liver, while decreased the expression of Cyp7a1. EMO significantly activated Fxr, while Sirt1 inhibitor and Sirt1 gene silencing significantly reduced Fxr activity in vitro. Collectively, EMO in the right dose has a protective effect on liver injury induced by ANIT, and the mechanism may be through activation of Fxr by Sirt1, thus regulating bile acid metabolism, and reducing bile acid load in hepatocytes.