Lead in
Adenosine is undoubtedly an ancient biological molecule that is a component of many enzyme cofactors; ATP, FADH, NAD(P)H, and coenzyme A, to name but a few, and, of course, of RNA. Here we present an overview of the role of adenosine in its most reactive form: as an organic radical formed either by homolytic cleavage of adenosylcobalamin (coenzyme B12, AdoCbl) or by single-electron reduction of S-adenosylmethionine (AdoMet) complexed to an iron-sulfur cluster. Although many of the enzymes we discuss are newly discovered, adenosine’s role as a radical cofactor most likely arose very early in evolution, before the advent of photosynthesis and the production of molecular oxygen which rapidly inactivates many radical enzymes. AdoCbl-dependent enzymes appear to be confined to a rather narrow repertoire of rearrangement reactions involving 1,2-hydrogen atom migrations. In contrast, there has been a recent explosion in the number radical AdoMet enzymes discovered that catalyze a remarkably wide range of chemically challenging reactions. Although all the radical AdoMet enzymes so far characterized come from anaerobically growing microbes and are very oxygen sensitive, there is tantalizing evidence that some of these enzymes may be active in aerobic organisms including humans.