The construction of artificial solar
fuel generating systems requires
the heterogenization of large quantities of catalytically active sites
on electrodes. In that sense, metal–organic frameworks (MOFs)
have been utilized to assemble unpreceded concentration of electrochemically
active molecular catalysts to drive energy-conversion electrocatalytic
reactions. However, despite recent advances in MOF-based electrocatalysis,
so far no attempt has been made to exploit their unique chemical modularity
in order to tailor the electrocatalytic function of MOF-anchored active
sites at the molecular level. Here, we show that the axial coordination
of electron-donating ligands to active MOF-installed Fe-porphyrins
dramatically alters their electronic properties, accelerating the
rates of both redox-based MOF conductivity and the electrocatalytic
oxygen reduction reaction (ORR). Additionally, electrochemical characterizations
show that in multiple proton-coupled electron transfer reactions MOF-based
redox hopping is not the only factor that limits the overall electrocatalytic
rate. Hence, future efforts to enhance the efficiency of electrocatalytic
MOFs should also consider other important kinetic parameters such
as the rate of proton-associated chemical steps as well as mass-transport
rates of counterions, protons, and reactants toward catalytically
active sites.