This paper aims to review the recent progress in the research carried out by scientists worldwide regarding American Footballers' head injuries and head protective equipment, focusing on the role of computation methods, mainly finite element method application to American Football helmet design and testing as well as head injury biomechanics. The helmet technology has been constantly improved, and it is driven by market competition, medical records, coaches and athletes' self-awareness. With finite element analysis and computational resources development, it is possible to develop more accurate brain models to recreate American Footballers' head impacts. This method seems to be an excellent simulation tool to verify the helmet's ability to absorb energy and enable the researchers to have an insight into head kinematics and tissue-level injuries. The work is focused on head injuries in American Football as the sport becomes more popular across the globe. Additionally, a reference to the development and newest technology is presented. The review's proposed approach gathers studies presented within the last decade regarding the coupling of finite element brain models with helmets in standardised or on-field conditions. The synthesis of the existing state of the art may enhance the researchers to continue investigating the athlete's trauma and improve the protective gear technology to minimise head injuries. The authors presented numerous studies regarding concussions and the newest findings from the last decade, including Finite Element Head models (FEHm) with American Football helmet simulations. All the studies were searched through Google Scholar, Scopus and ResearchGate databases.