A 34-residue α/β peptide, ], derived from the C-terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus was studied using CD and NMR spectroscopy at various temperatures, and by differential scanning calorimetry. It was found that the C-terminal part (a 16-residue-long fragment) of this peptide, which corresponds to the sequence of the β-hairpin in the native structure, forms structure similar to the β-hairpin only at T = 313 K, and the structure is stabilized by non-native long-range hydrophobic interactions (Val47 -Val59). On the other hand, the N-terminal part of IG(28-61), which corresponds to the middle α-helix in the native structure, is unstructured at low temperature (283 K), and forms an α-helix-like structure at 305 K and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305 and 313 K), we do not observe any long-range connectivities which would have supported packing between the C-terminal (β-hairpin) and the Nterminal (α-helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Koliński [Kmiecik, S.; Kolinski, A. Biophys J 2008, 94, 726-736], based on Monte Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed.