This paper discusses the changes in the phase composition and magnetic properties of the AISI 1010 and AISI 1085 steels that were nitrided at 570 °C in an ammonia atmosphere for 5 h and that were then annealed at 520 °C in a N2/Ar atmosphere for 4 h. The test samples were made in the form of balls with diameters of less than 5 mm. The thickness of the obtained iron nitride layers was assessed through metallographic tests, while the phase composition was verified through X-ray tests. The magnetic properties were determined using ferromagnetic resonance (FMR) and superconducting quantum interference device (SQUID) techniques. Our research shows that, during the annealing of iron nitrides with a structure of ε + γ′, the ε phase decomposes first. As a result of this process, an increase in the content of the γ′ phase of the iron nitride is observed. When the ε phase is completely decomposed, the γ′ phase begins to decompose. The observed FMR signals did not come from isolated ions but from more magnetically complex systems, e.g., Fe–Fe pairs or iron clusters. Studies have shown that nitriding and annealing can be used to modify the magnetic properties of the tested steels.