Hydrogels from alkali lignin were prepared and shown to display unique swelling. Variable lignin contents (6.25%, 10.00%, 12.50%, and 14.29%) were successfully grafted with both N,N'-methylenebisacrylamide (MBA) and acrylamide (AM). Ionic liquids such as 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) were used to avoid harsh, unfriendly solvents. All materials were characterized using X-ray diffraction (XRD) FT-IR spectroscopy, scanning electron microscope (SEM), thermogravimetric analysis (TGA), and swellability. The swelling behaviors of the hydrogels were noticeably influenced by their lignin content. The degree of equilibrium swelling (the maximum swelling degree) decreased with increasing content of lignin. The highest swelling degree (1,650%) was obtained at 6.25 wt% lignin. Kinetics revealed that the swelling behaviors of hydrogels were well-fitted by the Schott model.