The dsRNA-activated protein kinase, PKR, plays a pivotal role in the cellular antiviral response. PKR contains an N-terminal dsRNA binding domain (dsRBD) and a C-terminal kinase domain. An autoinhibition model has been proposed in which latent PKR exists in a closed conformation where the substrate binding cleft of the kinase is blocked by the dsRBD. Binding to dsRNA activates the enzyme by inducing an open conformation and enhancing dimerization. We have tested this model by characterizing the affinity and kinetics of nucleotide substrate binding to PKR. The fluorescent nucleotide mant-AMPPNP binds to unactivated PKR with K d ~ 30 μM and the affinity is not strongly affected by autophosphorylation or binding to dsRNA. Biphasic binding kinetics are observed where the fast phase depends on nucleotide concentration but the slow phase is ligand-independent. The kinetic data fit to a two-step model of ligand binding followed by a slow conformation change. The kinetics are also not strongly affected by phosphorylation state or dsRNA binding. Thus, the equilibrium and kinetic data indicate that substrate accessibility of the kinase is not modulated by PKR activation state as predicted by the autoinhibition model. In atomic force microscopy images, monomers of the latent protein are resolved with three separate regions linked by flexible, bridge-like structures. Resolution of the individual domains in the images supports a model in which unactivated PKR exists in an open conformation where the kinase domain is accessible and capable of binding substrate.PKR is a soluble protein kinase which is activated by dsRNA (1). PKR is constitutively expressed in most mammalian cell types but it is induced by type 1 interferons and plays a central role in the innate immunity defense against viral infection (2). In addition, PKR has been implicated in a variety of cellular signal transduction pathways (3). PKR is a member of the family of protein kinases which phosphorylate eIF2α, resulting in a blockage of translational initiation (4). Production of dsRNA during viral infection leads to PKR activation and inhibition of protein synthesis and apoptosis (5). PKR contains an N-terminal double-stranded RNA binding domain (dsRBD) and a C-terminal kinase domain. The dsRBD consists of two tandem copies of a widely distributed double stranded RNA binding * To whom correspondence may be addressed: (860) 486-4333 (telephone), james.cole@uconn.edu. Table S1: Relative contribution of the fast phase for association of mant-AMPNP with PKR. This material is available free of charge via the Internet at http://pubs.acs.org.
Supporting Information
NIH Public Access
Author ManuscriptBiochemistry. Author manuscript; available in PMC 2010 August 2.
NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript motif (6). In an NMR structure of a PKR dsRBD construct, each of the dsRNA binding motifs adopts the canonical αβββα fold with a ~20 amino acid intervening region that is unstructured in the absence of dsRNA (7). The PKR kinas...