Coordination of the [Mo(3)S(4)(H(2)O)(9)](4+) cluster with the trivacant [AsW(9)O(33)](9-) ion gives the supramolecular complex [{(H(4)AsW(9)O(33))(4)(Mo(3)S(4){H(2)O}(5))}(2)](12-) (1) in good yield. The structure of 1 shows that two [H(4)AsW(9)O(33)](5-) subunits sandwich a single central [Mo(3)S(4)(H(2)O)(5)](4+) ion to give a basic monomeric unit [(H(4)AsW(9)O(33))(2){Mo(3)S(4)(H(2)O)(5)}](6-). In the solid state, a supramolecular dimeric association is evidenced that consists of two [(H(4)AsW(9)O(33))(2){Mo(3)S(4)(H(2)O)(5)}](6-) units held together by twelve hydrogen bonds and four SS contacts. Complex 1 reacts with NaAsO(2), AgNO(3) and CuI to give compounds 2, 3 and 4, respectively. X-ray structural analysis reveals that the molecular arrangements of 2 to 4 are closely related to the parent structure of 1. {AsOH}(2+), Ag(+) and Cu(+) ions are located on three distinct pairs of sites. Two hanging {AsOH}(2+) groups in 2 are symmetrically attached to two opposite {AsW(9)O(33)} subunits. Complex 3 is the first example of an Ag/{Mo(3)S(4)} combination in which the environment of the two equivalent Ag(+) cations is remarkable for containing two sulfur atoms belonging to {Mo(3)S(4)}, two oxygen and one central arsenic atom of the {AsW(9)O(33)} subunits. Potentiometric titration shows that the addition of Ag(+) ions is quantitative and occurs in two successive steps (K(1)=4.1 x 10(6) and K(2)=2.3 x 10(5) L mol(-1)), which is consistent with the retention of the supramolecular cluster in solution. The structure of 4 reveals a single copper atom embedded in the central part of the dimer. The Cu(+) cation is bound to four sulfur atoms to complete a cuboidal moiety. UV/Vis studies in solution indicate that the stability of the dimeric assemblies of 2, 3 and 4 is significantly enhanced by the presence of Cu(+) or Ag(+) ions, which act as additional coordination linkers within the supramolecular cluster. The anions 1 to 4 were characterised by (183)W NMR spectroscopy in solution. The 10-line spectra recorded for each of them are consistent with an averaged C(2h) molecular symmetry in solution.