ABSTRACT:The effects exerted by fused aromatic rings on the UV-vis spectra of porphyrins are surveyed. Modified porphyrin chromophores with fused benzene, 1,2-naphthalene, 9,10-phenanthrene or phenanthroline rings are surprisingly little affected even when a maximum number of ring fusions are incorporated. Linearly annealed naphtho-or anthraporphyrins show large red shifts to the Q bands but the Soret absorptions are weakened and undergo only minor bathochromic shifts. Fluoranthoporphyrins give multiple bands in the Soret region, but the Q band region is virtually unaffected by this tetracyclic ring system. On the other hand, metal chelates of fluoranthoporphyrins show surprisingly strong bands near 600 nm. Benzothiadiazole rings split and weaken the Soret band, but the Q bands region is unexceptional. However, metal coordination again produces relatively intense bands near 600 nm. The most significant results were obtained for porphyrins with fused acenaphthylene rings. Monoacenaphthoporphyrins (41) have three Soret bands at 387, 431 and 454 nm, and the longest wavelength Q band is shifted to 658 nm. opp-Diacenaphthoporphyrin (43) further shifts these bands with two Soret absorbances at 443 and 470 nm, and an additional strong peak is observed at 692 nm. The metal complexes of these systems also show strong bands between 602 and 656 nm. Still larger effects are produced by tetraacenaphthoporphyrin (47), the dication for which in trifluoroacetic acid (TFA)-chloroform has a Soret absorption at 528 nm. Tetraaryltetraacenaphthoporphyrins (48) are even more red shifted, showing Soret bands between 556 and 570 nm for the free bases and 565 to 588 nm for the related dications. The lead(II) chelate for tetraphenylporphyrin (48a) shows an additional 'hyper' spectral shift that brings the Soret band to 604 nm, and this effect can also be achieved by introducing four meso-phenylethynyl substituents onto the tetraacenaphthoporphyrin nucleus (49). In addition, by combining these two factors for the lead(II) chelate of 49, a record-breaking value for the Soret band of 642 nm can be achieved. Spectral shifts due to ring annelation in porphyrin analogues are also discussed, including those for oxybenziporphyrins, oxypyriporphyrins, carbaporphyrins and sapphyrins.