In this study, we analyse the dynamical evolution, and identify the major warming (MW) and minor warming events of the past 11 Arctic winters (2010/11–2020/21). During the period, MW is found in 4 winters and is in January for 2012/13, 2018/19 and 2020/21 and in February for 2017/18. A major final warming is observed in the year 2015/16. The most severe MW occurred in the 2012/13 winter, for which a rise in temperature of about 30 K is found at 60° N. The investigation of tropospheric wave forcings for the period reveals that the MW in 2012/13 and 2017/18 is forced by the combined activity of waves 1 and 2, whereas the MW in 2018/19 and 2020/21 is driven by wave 1. Studies have shown that the frequency of Sudden Stratospheric Warming (SSW) in the Arctic has been increasing since 1957/58, which is about 1.1 MWs/winter during 1998/99–2009/10. However, this frequency decreases to 0.36 MWs/winter in the period 2010/11–2020/21 and 0.74 MWs/winter in 1998/99–2020/21. An inverse relationship is observed between the period of occurrence of SSWs and total column ozone (TCO) in the Arctic for the past 11 winters (2010/11–2020/21). For instance, the temperature in the lower stratosphere in January, in which most warmings occur, shows a statistically significant high positive correlation (0.79) with the average TCO in January–March. Therefore, this study assists in understanding the relationship between inter-annual variability of ozone and the occurrence of SSWs.