Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
High‐performance microwave absorption materials (MAM) are often accompanied by synergistic effects of multiple loss mechanisms, but the contribution share of various loss mechanisms has been neglected to provide a template and reference for the design of MAM. Here, a highly conductive 2D structure is designed through a functional group‐induced structure modulation strategy, composite L‐Ni@C can reach an effective absorption bandwidth of 6.45 GHz at 15% fill rate, with a maximum absorption efficiency of 99.9999%. Through the layer‐by‐layer analysis of the loss mechanism, it is found that the strong loss originates from the polarization loss at the heterogeneous interface. The movement of space charge between the two‐phase interface forms an interfacial electric field, and the in situ doping of nitrogen is cleverly achieved by the introduction of amino functional groups, which significantly enhances the rate of space charge transfer between the two‐phase interface and greatly facilitates the electron migration polarization. The space charge motion law of the interfacial electric field is also simulated using COMSOL simulation software to illustrate the electron migration polarization mechanism at heterogeneous interfaces. This work fills the gap of functional group‐induced structural modulation and presents new theories into the mechanism of space charge movement at heterogeneous interfaces.
High‐performance microwave absorption materials (MAM) are often accompanied by synergistic effects of multiple loss mechanisms, but the contribution share of various loss mechanisms has been neglected to provide a template and reference for the design of MAM. Here, a highly conductive 2D structure is designed through a functional group‐induced structure modulation strategy, composite L‐Ni@C can reach an effective absorption bandwidth of 6.45 GHz at 15% fill rate, with a maximum absorption efficiency of 99.9999%. Through the layer‐by‐layer analysis of the loss mechanism, it is found that the strong loss originates from the polarization loss at the heterogeneous interface. The movement of space charge between the two‐phase interface forms an interfacial electric field, and the in situ doping of nitrogen is cleverly achieved by the introduction of amino functional groups, which significantly enhances the rate of space charge transfer between the two‐phase interface and greatly facilitates the electron migration polarization. The space charge motion law of the interfacial electric field is also simulated using COMSOL simulation software to illustrate the electron migration polarization mechanism at heterogeneous interfaces. This work fills the gap of functional group‐induced structural modulation and presents new theories into the mechanism of space charge movement at heterogeneous interfaces.
High‐frequency electronic response governs a broad spectrum of electromagnetic applications from radiation protection, and signal compatibility, to energy recovery. Despite various efforts to manage electric conductivity, dynamic control over dielectric polarization for real‐time electromagnetic modulation remains a notable challenge. Herein, an electrochemical lithiation‐driven hierarchical disordering strategy is demonstrated for actively modulating electromagnetic properties. The controllable formation and diffusion of coherent interfaces and cation vacancies tailor the coupling of atomic electric field and thus the locally polarized domains, which leads to the reversible electromagnetic transparency/absorption switching with a tunable range of −0.8–−20.4 dB for the reflection loss and a broad operation bandwidth of 4.6 GHz. Compared to traditional methods of heteroatomic doping, hydrogenation, mechanical deformation, and phase transition, the electrochemical strategy shows a larger regulation scope of dielectric permittivity with the maximum increase ratios of 260% and 1950% for real and imaginary parts, respectively. This enables the construction of various device architectures including the adaptive window and pixelated metasurface. The results offer opportunities to achieve intelligent electromagnetic devices and pave an avenue to rejuvenate various electromagnetic functions of semiconductive oxides.
Mott insulator possesses the property of converting into semiconductor under supernormal conditions and achieving the Mott insulator‐semiconductor transition (IST) holds great scientific value. Nevertheless, current IST methodologies possess certain limitations because they are not capable of being implemented under conventional conditions, thereby limiting their practical applications. Herein, a highly mixed index facets (HMIF) strategy is proposed to construct homogeneous interfaces with gradient work function (WF) in Mott insulator NiO, accompanied by numerous oxygen vacancies. These vacancies provide additional defect energy levels and inhomogeneous charge distributions, resulting in a 180 fold enhancement of conductivity, realizing the IST process, and inducing the defect polarization. In addition, HMIF configuration induces electron transport along the index facets with gradient WF, ultimately leading to accumulation on the specific facet. This accumulation allows this facet can be considered as a dipole with its adjacent facets and makes NiO to attenuate electromagnetic waves (EMW) through dipole polarization. Therefore, NiO with exposed HMIF possesses improved EMW absorption properties (80‐fold higher than that of commercial NiO), realizing the transition from EMW‐transmissive to EMW‐absorbing materials. This research presents an approach for the IST process, discovers the polarization behavior that occurred on specific index facet, and extends its potential application in EMW absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.