2003
DOI: 10.1007/bf02349982
|View full text |Cite
|
Sign up to set email alerts
|

Mechanisms governing the visco-elastic responses of living cells assessed by foam and tensegrity models

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2008
2008
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 47 publications
0
3
0
1
Order By: Relevance
“…In rats, capillary density in the cerebral cortex increases rapidly between 10 and 21 days (Craigie, 1925;Caley and Maxwell, 1970;Keep and Jones, 1990). Other investigators have directly analyzed the mechanical properties of some of the filamentous proteins as well as cultured astrocytes, endothelial cells, and basement membranes using atomic force microscopy (Yamane et al, 2000;Canadas et al, 2003;Candiello et al, 2007;Chotard-Ghodsnia and Verdier, 2007;Kuznetsova et al, 2007;Miller et al, 2009;Yao et al, 2010). The contribution of myelin to mechanical stiffness is not conclusive (Heredia et al, 2007;Shreiber et al, 2009), although it is well known that myelin proteins (including MBP) promote adhesion between the oligodendrocyte cell membranes (Dyer, 2002).…”
Section: Discussionmentioning
confidence: 95%
“…In rats, capillary density in the cerebral cortex increases rapidly between 10 and 21 days (Craigie, 1925;Caley and Maxwell, 1970;Keep and Jones, 1990). Other investigators have directly analyzed the mechanical properties of some of the filamentous proteins as well as cultured astrocytes, endothelial cells, and basement membranes using atomic force microscopy (Yamane et al, 2000;Canadas et al, 2003;Candiello et al, 2007;Chotard-Ghodsnia and Verdier, 2007;Kuznetsova et al, 2007;Miller et al, 2009;Yao et al, 2010). The contribution of myelin to mechanical stiffness is not conclusive (Heredia et al, 2007;Shreiber et al, 2009), although it is well known that myelin proteins (including MBP) promote adhesion between the oligodendrocyte cell membranes (Dyer, 2002).…”
Section: Discussionmentioning
confidence: 95%
“…3,42,51 Recognition of the importance of cytoskeletal structure for cell shape control led to development of open-foam models of the cell in which stresses necessary to resist shape distortion arise in the cytoskeleton due to deformation (e.g., stretching, bending and torsion) of individual cytoskeletal filaments under the action of externally applied loads. 6,57 But living cells are not passive materials; they are actively prestressed structures. Prestress refers to the pre-existing tensile stress that exists in the cytoskeleton before application of an external load.…”
Section: Cell Mechanics and Mechanotransductionmentioning
confidence: 99%
“…4,6,7,13,42,[60][61][62][63][64][65][66]68,69,71,72,74 Prestress is also critical for synthetic gels composed of natural cytoskeletal polymers and molecules to exhibit mechanical properties that are also displayed by living cells. 22 In tensegrities, changes in this internal force balance alter cell deformability by promoting rearrangements of components located throughout the structure, and by altering the dynamic mechanical behavior of individual elements.…”
Section: Cell Mechanics and Mechanotransductionmentioning
confidence: 99%
“…Parmi les modèles de cytosquelette développés à ce jour, ceux basés sur l'analogie avec les systèmes de tenségrité (structures spatiales réticulées autocontraintes, composées d'un réseau discontinu de barres comprimées par un réseau continu de câbles tendus, assurant ainsi l'équilibre mécanique de l'ensemble) ont largement démontré leur pertinence par leur capacité à considérer simultanément l'aspect structural tridimensionnel et l'adhésion discrète du cytosquelette, son comportement mécanique globale non linéaire (processus de rigidification à la contrainte), le rôle spécifique des filaments d'actine (câbles) et des microtubules (barres), l'effet du changement de tension interne sur la rigidité de l'ensemble, ainsi que la dépendance des propriétés viscoélastiques structurales en fonction de la fréquence de sollicitation [8,9,10,11,12,13,14,15,16,17,18]. Malgré leur pertinence avérée au regard des observations expérimentales, y compris d'un point de vue quantitatif, ces modèles restent néanmoins et à ce jour passifs (la tension dans les câbles ne résulte pas d'un phénomène actif et ne prend donc pas en compte les moteurs moléculaires) et statiques (non prise en considération de processus dynamiques tels que la polymérisation de filaments ou l'évolution de leur connectivité).…”
Section: Introductionunclassified