The impact-echo method is commonly used for detection of flaws in concrete elements based on the shift in the thickness frequency of a plate-like member. However, there is a need to develop this efficient technique for other applications. This paper investigates the feasibility of using the impact echo-method for identifying corrosion of steel reinforcement in concrete structures. For this purpose, 180 reinforced concrete cubes were cast and tested. The main parameters studied were the amount of recycled aggregate (i.e. 0%, 25%, 50% and 100%), nanosilica (1.5% and 3%) and the steel bar diameter (12 and 20mm). Different levels of corrosion were electrochemically induced by applying impressed voltage technique for 2, 5, 10 and 15 days. The impact-echo results were correlated against the actual corrosion levels obtained by the mass loss method. The experimental results showed that the response of impact echo in terms of frequency peaks is found to be sensitive to the high and moderate levels of corrosion. However, no clear trend was observed at the initial stage of corrosion. It is demonstrated that the impact-echo testing can be effectively used to qualitatively detect the damage caused by corrosion phenomenon in reinforced concrete structures.