In future high intensity, high energy accelerators it must be ensured that particle losses are minimized, as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup.Measurements based on optical transition radiation (OTR) are a well-established technique for measurements of the transverse beam profile. However, in order to be suitable for halo measurements as well, the dynamic range of the final image acquisition system needs to be high, being able to cover at least five orders of magnitude in intensity changes.Here, the performance of a standard acquisition system as it is used in the CLIC test facility (CTF3) is compared to a step-by-step measurement with a small movable photo multiplier tube and an innovative camera system based on charge injection device (CID) technology. Special emphasis is given on a description of the characteristics of the latter system. In future high intensity, high energy accelerators it must be ensured that particle losses are minimized, as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup.
Published in MEASUREMENT SCIENCEMeasurements based on optical transition radiation (OTR) are a well-established technique for measurements of the transverse beam profile. However, in order to be suitable for halo measurements as well, the dynamic range of the final image acquisition system needs to be high, being able to cover at least five orders of magnitude in intensity changes.Here, the performance of a standard acquisition system as it is used in the CLIC test facility (CTF3) is compared to a step-by-step measurement with a small movable photo multiplier tube and an innovative camera system based on charge injection device (CID) technology. Special emphasis is given on a description of the characteristics of the latter system.
INTRODUCTIONFor a future linear collider, it will be of central importance to have a detailed understanding of beam halo formation, since beam losses in high intensity machines will cause severe activation of the surrounding vacuum chambers and thus complicate maintenance and increase costs. Several mechanisms can lead to the formation of a beam halo including machine mismatch, beam dispersion and scattering effects [1]. Measurements done in proton machines [2,3] confirm, to a large extent, the validity of the particle core model [4,5,6].On the other hand, limited experience on halo formation in intense electron beams is available on the international scene, and besides the clear need for corresponding models, beam diagnostic techniques need to be de...