Some chewing larvae are capable of inducing galls in the host vascular cylinder, e.g. Dasineura sp. (Cecidomyiidae) on Peumus boldus stems. Due to the medicinal and economic importance of P. boldus, the anatomical and functional implications of establishment of Dasineura sp. on P. boldus stems were investigated. We asked if establishment of Dasineura sp. in P. boldus stems induces abnormalities at the cellular and organizational level of the vascular system that increase during gall development in favour of the hydric status of the gall.
Anatomical alterations induced in the stems during gall development were determined. Cytohistometric analyses in mature galls were compared to non‐galled stems, and water potential and leaf area of non‐galled stems were compared with galled stems.
Dasineura sp. establishes in the vascular cambium, leading to delignification and rupture of xylem cells, inhibiting formation of phloem and perivascular sclerenchyma. Gall diameter increases together with larval feeding activity, producing a large larval chamber and numerous layers of nutritive tissue, vascular parenchyma, and sclerenchyma. These anatomical alterations do not affect the leaf area of galled stems but favour increased water flow towards these stems.
The anatomical alterations induced by Dasineura sp. in P. boldus stems guarantee water and nutrient supply to the gall and larva. After the inducer exits stems, some host branches no longer have vascular connections with the plant body.